An expressive completeness theorem for coalgebraic modal mu-calculi
نویسندگان
چکیده
Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the “game functor”). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.
منابع مشابه
An Expressive Completeness Theorem for Coalgebraic Modal Μ-calculi
Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given...
متن کاملCompleteness for μ-calculi: a coalgebraic approach
We set up a generic framework for proving completeness results for variants of the modal mucalculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus. Besides these main applications...
متن کاملDisjunctive bases: normal forms and model theory for modal logics
We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it m...
متن کاملDisjunctive Bases: Normal Forms for Modal Logics
We present the concept of a disjunctive basis as a generic framework for normal forms in modal logic based on coalgebra. Disjunctive bases were defined in previous work on completeness for modal fixpoint logics, where they played a central role in the proof of a generic completeness theorem for coalgebraic mu-calculi. Believing the concept has a much wider significance, here we investigate it m...
متن کاملCompleteness for Coalgebraic Fixpoint Logic
We introduce an axiomatization for the coalgebraic fixed point logic which was introduced by Venema as a generalization, based on Moss’ coalgebraic modality, of the well-known modal mucalculus. Our axiomatization can be seen as a generalization of Kozen’s proof system for the modal mu-calculus to the coalgebraic level of generality. It consists of a complete axiomatization for Moss’ modality, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2017